

Signaling for Different Applications

Matt Krebs

Kelcor, Inc.

Workshop Leaders

• John Riordan

OnSIP, Founder and CEO

• Dr. Thomas Sheffler

SightCall,

• Oleg Levy
Eyeball Networks,

• Rod Apeldoorn
Priologic, EasyRTC Server Lead

SIGNALING FOR DIFFERENT

WEBRTC APPLICATIONS

SIP over WebSocket

John Riordan

WebRTC Conference and Expo

San Jose 2014

SIGNALING OPTIONS

Transport Layer

• WebSocket, Comet

Application Layer

• SIP, XMPP, proprietary, other

Use case dependent

• Can be easy in trivial use case

Pass JSON between two browsers connected to same URL

• But harder in reality
Performance, reliability, scaling, interoperation

Operating signaling network vs operating web servers

HTML5 WEBSOCKET

Provides

• Full-duplex communications channels over a single TCP connection

• Designed to be implemented in web browsers and web servers

Leverages HTTP

• HTTP handshake initiated by client

• HTTP “Upgrade” to WebSocket protocol

• Subprotocols (ie SIP over WebSocket)

Secure

• HTTP/WebSocket unified security model

• As HTTPS is HTTP over TLS…

• WebSocket Secure is WebSocket over TLS

Supported

Firefox 6, Chrome 14,

IE 10, Safari 6…

SIP: SESSION INTERNET PROTOCOL

Pros

Mature

Federated

Interoperable

Supports JSON

Cons

Not a W3 standard

Unfamiliar for web developers

Messages hard to parse in JavaScript

Bloated, complex, and a lot of

extensions

SIP: SESSION INTERNET PROTOCOL

June 2002 - IETF RFC 3261 - https://datatracker.ietf.org/doc/rfc3261/

RFC Abstract

This document describes Session Initiation Protocol (SIP), an application-layer control

(signaling) protocol for creating, modifying, and terminating sessions with one or more

participants. These sessions include Internet telephone calls, multimedia distribution,

and multimedia conferences.

SIP invitations used to create sessions carry session descriptions that allow participants

to agree on a set of compatible media types. SIP makes use of elements called proxy

servers to help route requests to the user's current location, authenticate and

authorize users for services, implement provider call-routing policies, and provide

features to users. SIP also provides a registration function that allows users to upload

their current locations for use by proxy servers. SIP runs on top of several different

transport protocols.

THE WEBSOCKET PROTOCOL AS A TRANSPORT FOR SIP

January 2014 - IETF RFC 7118 - https://datatracker.ietf.org/doc/rfc7118/

RFC Abstract

The WebSocket protocol enables two-way real-time communication between clients

and servers in web-based applications. This document specifies a WebSocket

subprotocol as a reliable transport mechanism between Session Initiation Protocol

(SIP) entities to enable use of SIP in web-oriented deployments.

MOBILE WEBRTC APP SIGNALING

Signaling reliability

• Multiple IP networks – ie LTE and WiFi

• Volatile network connectivity

Battery life

• Drained battery impacts application function

iOS Support

• No browser application support

• No native application (WebView) support

SIGNALING CHANNEL IS CLIENT-INITIATED

SERVER-INITIATED CONNECTIONS

CLIENT-INITIATED CONNECTIONS

WEBSOCKET SERVERWEB BROWSER

SIGNALING CHANNEL NEEDS TO BE “UP”

“A WOULD LIKE TO TALK TO B”

“A WOULD LIKE TO TALK TO B”

WEB BROWSER WEBSOCKET SERVER

A

B

A

B

RELIABLE SIGNALING CHANNEL

Must be client initiated

• NATs, Firewalls

• Dynamic network configurations (DHCP)

• No useful or long-term names in DNS

Need low-latency signaling channel for reliable

applications

• RTC signals are time sensitive

• Polling signals missed between polls

RELIABLE SIGNALING CHANNEL

Access link failures

• Client needs to reconnect, but might not be aware of link failure

• Multihoming needed to protect against individual access link failure

Avalanche restart problem

• Load on when hosts reconnect simultaneously

• Distribution and load balancing of connections

• Client side exponential back-off warranted

MANAGING CLIENT-INITIATED CONNECTIONS IN SIP

October 2009 - IETF RFC 5626- https://datatracker.ietf.org/doc/rfc5626/

RFC Abstract
The Session Initiation Protocol (SIP) allows proxy servers to initiate TCP connections

or to send asynchronous UDP datagrams to User Agents in order to deliver requests.

However, in a large number of real deployments, many practical considerations, such

as the existence of firewalls and Network Address Translators (NATs) or the use of

TLS with server-provided certificates, prevent servers from connecting to User Agents

in this way. This specification defines behaviors for User Agents, registrars, and proxy

servers that allow requests to be delivered on existing connections established by the

User Agent. It also defines keep-alive behaviors needed to keep NAT bindings open

and specifies the usage of multiple connections from the User Agent to its registrar.

CLOSING

Thank You

email/sip: john@onsip.com

Please jot down any questions for the
end of the session

Dr. Thomas Sheffler

SightCall

Signaling Challenges in the Large

• Signaling – what is it?

• Scaling Issues

• Security Issues

• Mobility Issues

• WebRTC defines the media plane but leaves
Signaling undefined

UDP or TCP

Media Flow

DTLS-SRTP

*Web browsers are not servers

How to send a notification to web page?

Signaling
Server

W
SS

W
SS

“I want to call you”

“OK, here is how you call me”

*UDP is not an option

Signaling
Server

W
SS

W
SS

“I want to call you”

“OK, here is how you call me”

UDP or TCP

Media Flow

DTLS-SRTP

Signaling with SIP – an example

db

INVITE
INVITE

100 Trying
183 Progress

183 Progress
200 OK

200 OK

ACK
ACK

Media: RTP/RTCP Stream

BYE

200 OK
200 OK

BYE

SIP Server

Terminal 1 Terminal 2

Implications of Signaling on Scaling

Signaling
Server

W
SS

W
SS

Terminal 1 Terminal 2 Terminal 3 Terminal 1,000,000

W
SS

W
SS

* millions of open connections

Scaling

• The Signaling Service must be capable of
maintaining millions of open TCP connections.

• A single server cannot do this.

• A distributed architecture is necessary.

– this is difficult

Security

• WebRTC Security evaluated against three safety
objectives

– Confidentiality - WebRTC

– Integrity - WebRTC

– Authenticity - WebRTC

Confidentiality

• Data transferred between two peers does not reach
an untrusted third party.

– handled by encryption

Media Flow

DTLS-SRTP

Integrity

• Data is not modified on the way to the receiver and
that the receiver can detect modification.

DTLS-SRTP

Man-in-the-Middle

Authenticity

• The claim that the real-time data is really coming
from who you think it is.

• WebRTC endpoints are not tied to user identities.

• This becomes an issue of the signaling layer.

Authentication

Partner
Application

Auth
Client

RTC
Cloud

RTC JS

token

au
th

en
ti

ca
te

“bob”

to
ke

n

Users

uid1:bob
uid2:alice

authorize uid1 Connections

bob:token

Signaling
Server

W
SS

Authenticity: Maintain a Chain Of Trust

Terminal 1

Terminal 2

Signaling
Server

Identity
Provider

“I am Dr. Welby” “T1 is Dr. Welby” “Dr. Welby is calling”

Mobility

• mobile devices hop networks (4G <-> WiFi)
• their IP address changes

• Handoffs between cells affects IP addresses

– sudden changes in network connectivity [RFC5944:
mobilility]

• WebRTC technologies do not really address
changing network topologies

When Bob moves his IP address changes

Signaling
Server

Connections

bob:IP-Address

“bob”

Internet

Summary

• WebRTC defines media flow, but leaves signaling
undefined

– This leaves room for lots of innovation

• SIP over WebSockets, PubNub, Bespoke Protocols

– Be aware of the challenges

• Scaling - to millions of open TCP connections

• Security - ensuring the Authenticity of callers

• Mobility – signaling in the face of changing network topology

The Future

• ORTC

– relieves developers from manipulating SDP packets

• raises the level of abstraction

• potentially greater interoperability

• enhanced services easily

– bypasses limitations of SDP offer/answer

– for example asymmetry: audio-only endpoint to a/v endpoint

Please jot down any questions for the
end of the session

SIGNALING FOR DIFFERENT WEBRTC
APPLICATIONS

XMPP and WebRTC

Oleg Levy

Outline

• Quick overview of XMPP

• What can you build with XMPP

• How does XMPP work with WebRTC

eXtensible Messaging and Presence Protocol

• Client-Server

• Simple to work with*

• Secure

• Native support for users with multiple devices

• Presence/Messaging

• XMPP Standards Foundation (XSF)

• Very strong eco-system (batteries included)

What can you build with XMPP?

• Obvious example - Audio/Video/Chat app
– Multiple logged in endpoints
– Secure
– Message archiving

• Smart devices
– Washing machine control
– Home alarm system
– Baby monitor

• Really anything that can be modeled after
presence/messaging

So many endpoints, but how can we scale?

• DNS SRV records

– Part of the spec (unlike HTTP)

– Users request _xmpp-client._tcp.eyeball.com

– …and choose the server from the list

• XMPP server farm

– Requires a load balancer

– Amazon ELB works nicely

XMPP & Browsers

• Native transport is a long lived TCP/TLS connection

– Try telnetting port 5222

– Not a request/response protocol

• We could try to use WebSockets

– Load balancing is not trivial

– At least for now, ELB doesn’t support it

• BOSH is the native method

Bidirectional-streams Over Synchronous HTTP

• Efficient method to simulate long-lived connections
with HTTP

• Secure
• Compatible with standard HTTP endpoints

– Proxies, firewalls
– Load balancers
– And the rest of your HTTP infrastructure

• Doesn’t require HTTP/1.1
– But probably not very important at this point

How does BOSH work?

• Client wants to send data
– Sends HTTP request
– Response is only when the server has

anything to say

• Client wants to send more data
– Sends a new HTTP request
– Server responds to the previous request
– New request is now held open

• Server wants to send data
– Puts the data into the open HTTP session and

responds
– Client gets the response and immediately

opens a new HTTP connection

• One connection is always open
– At most two

REQ1

REQ1 response

REQ3

REQ2 response

REQ2

scalable XMPP for WebRTC

Amazon ELB

nginx

HAProxy

BOSH
connectio

n
managers

cluster

XMPP
servers
cluster

Again, please note questions for the end

(it is almost here)

Custom and Data Channel Signaling

Rod Apeldoorn

EasyRTC Server Lead

Priologic Software Inc.

Example Custom Message Types
(from EasyRTC)

WebRTC Core

• candidate

• offer

• answer

• reject

Application Level

• authenticate

• hangup

• getIceConfig

• roomJoin

• roomData

• setPresence

• filesOffer

• Many more…

Why Combine WebRTC Signaling with
Application Servers?

• Authentication

• Call logging

• Call control

• Combine with application logic

• Client connects to just one server

– Why SIP + Presence + Application servers?

Transports

Websockets

• Available in all modern browsers

• Fast + Responsive + Securable

• Maintains open socket

• Servers have to deal with
concurrent socket limits

XHR Polling

• AKA “HTTP Long Polling”

• Easy + Securable

• To use:

– XMLHttpRequest API

– jquery.ajax()

• Used by Google AppRTC Demo

Transports cont.

JSONP + CORS

• The original popular method for
DHTML

• Cross site scripting issues

• “Cross-Origin Resource Sharing”
can be setup

• Still a valid fallback

– Especially for older browsers

Other

• XMPP (Jabber)

– Instant messengers

• Local

– Bluetooth

– USB / Serial

• WebRTC Data Channels

– Example coming!

Restful WebRTC Clients

• Conference server
(MCU)

• Recording and playback
server

• WebRTC / SIP Gateway

• Selective forwarding
units

• Test clients

Broadcast SFU Signaling Path

Conference SFU Signaling Path

Data Channel Signaling

What Can Be Done?

• Text messaging

• File transfers

• Gaming

• Call quality feedback and control

• Private networking

Benefits & Limitations

• Offload requests to central server

• Greater privacy

• Reduced latency

• Greater speed

• Lose server control

– security

• Inconsistent Data Channel support

Private WebRTC Signaling
1. Connect users to

servers via
Websockets

2. Establish
DataChannels
between users on
same servers

3. Establish WebRTC
Peer Connection
between User 1 and 3
– Signals sent via

DataChannel
– User 2 acts as a relay
– Neither server aware

of final connection

Private WebRTC Signaling
1. Connect users to

servers via
Websockets

2. Establish
DataChannels
between users on
same servers

3. Establish WebRTC
Peer Connection
between User 1 and 3
– Signals sent via

DataChannel
– User 2 acts as a relay
– Neither server aware

of final connection

Private WebRTC Signaling
1. Connect users to

servers via
Websockets

2. Establish
DataChannels
between users on
same servers

3. Establish WebRTC
Peer Connection
between User 1 and 3
– Signals sent via

DataChannel
– User 2 acts as a relay
– Neither server aware

of final connection

That was the end.
Now: questions?

