

Email: peter.dunkley@crocodilertc.net
Twitter: @pdunkley

WebRTC & WebSockets

Peter Dunkley, Technical Director, Crocodile RCS Ltd

mailto:peter.dunkley@crocodilertc.net
http://twitter.com/pdunkley

Evolution on the web

1990 1996 1998 2004 2011

Sir Tim Berners-Lee
creates HTML. Web
-pages are static

Microsoft and Netscape
introduce different
mechanisms for DHTML

W3C produces the
DOM1 specification

Google uses Ajax
in Gmail (W3C
releases 1st draft in
2006) – the dawn
of web-apps

WebSocket and
WebRTC
implementations
become available

Revolution in telecoms

1792 1837 1876 1919 1960s > 1990s > 2011
WebSocket and
WebRTC
implementations
become
available

The revolution

Before today the operators (big and small) had
full control over real-time communications
because it was hard to do and substantial
infrastructure investment was required.Claude Chappe

invented the optical
telegraph

First commercial
electrical telegraph
created by
Cooke and
Wheatstone

Alexander
Graham
Bell patents
the telephone

Rotary dial
enters
service

From the 1960s
onwards digital
exchanges start to
appear

1963: DTMF
enters service

From the 1990s onwards
voice started to be carried
on technologies developed
for data networks such as
ATM and IP

Demo #1: Crocodile Scrum

● Opera and Google Chrome only for now

– Works on Google Chrome for Android

– Mozilla Firefox support coming soon

● Anonymous ad-hoc conferencing

● Makes use of WebRTC and WebSockets

● Join the “devcon5” scrum

https://demos.crocodilertc.net/scrum

https://demos.crocodilertc.net/scrum

There are a number of proprietary implementations that
provide direct interactive rich communication using audio,
video, collaboration, games, etc. between two peers' web-
browsers. These are not interoperable, as they require non-
standard extensions or plugins to work. There is a desire to
standardize the basis for such communication so that
interoperable communication can be established between
any compatible browsers.

Real-Time Communication in WEB-
Browsers (rtcweb) 2013-03-13 charter

http://tools.ietf.org/wg/rtcweb/

http://tools.ietf.org/wg/rtcweb/

The mission of the Web Real-Time Communications
Working Group, part of the Ubiquitous Web Applications
Activity, is to define client-side APIs to enable Real-Time
Communications in Web browsers.

These APIs should enable building applications that can be
run inside a browser, requiring no extra downloads or
plugins, that allow communication between parties using
audio, video and supplementary real-time communication,
without having to use intervening servers (unless needed
for firewall traversal, or for providing intermediary services).

Web Real-Time Communications
Working Group Charter

http://www.w3.org/2011/04/webrtc-charter.html

http://www.w3.org/2011/04/webrtc-charter.html

● RTCWeb is the on-the-wire protocol as defined by the
IETF and may be used in many applications and
systems

– Within VoIP phones

– On network servers

– Includes MTI codecs for audio and video

● WebRTC is the browser API as defined by the IETF

RTCWeb and WebRTC: not the same thing

RTCWeb

Voice Engine

G.711/OPUS Codec

NetEQ for voice

Echo Canceller /
Noise Reduction

Video Engine

H.264/VP8 Codec

Video jitter buffer

Image enhancements

Transport

SRTP

Multiplexing

P2P
STUN + TURN + ICE

Audio Capture/Render Video Capture Network I/O

Session management / Abstract signalling (Session)

WebRTC C++ API (PeerConnection)

WebRTC API

Y
o

u
r w

e
b

ap
p

 #
1

Y
o

u
r w

e
b

a
p

p
 #

2

Y
o

u
r w

e
b

ap
p

 #
3

Based on the diagram from http://www.webrtc.org/reference/architecture

The web

Your
browser

. . .

http://www.webrtc.org/reference/architecture

Audio Codecs

● RTCWeb has two MTI (Mandatory To Implement)
audio codecs:

– G.711 narrowband
● free to use and unencumbered by patents
● trivial to implement
● widely supported on legacy equipment

– OPUS wideband
● free to use and unencumbered by patents
● complicated to implement – but there are open-source versions
● fantastic quality audio and excellent handling of packet loss

Video Codecs (the great debate)

● There is a big argument over which of H.264 and VP8 should
be used

● The arguments are commercial not technical
– H.264 and VP8 are comparable in terms of performance and quality

– H.264 and its licensing terms are unacceptable to many small companies and
open-source projects

● Cisco's offer helps some but not all

– The IPR situation around VP8 is unclear
● Large (and rich) companies cannot risk using VP8 – it makes them a target

– Mandating both will not solve this

● Out of desperation older codecs are being suggested including
H.261, H.263, and Theora

Codecs are not limited to the MTI

● Apps and browsers can offer any codecs they are
capable of

● The MTI is just the base set of codecs you must
support to ensure interoperability between endpoints

WebRTC has a rich API

● Media Capture and Streams

– Audio, video, and screen-sharing

– http://www.w3.org/TR/mediacapture-streams/

● MediaStream Recording

– http://www.w3.org/TR/mediastream-recording/

● WebRTC

– Data can be exchanged too

– http://www.w3.org/TR/webrtc/

Available (to varying degrees) in Chrome, Firefox, and Opera

http://www.w3.org/TR/mediacapture-streams/
http://www.w3.org/TR/mediastream-recording/
http://www.w3.org/TR/webrtc/

What do these APIs let you do?

● Capture audio and video streams from microphone
and webcam

● Exchange the captured audio and video with a peer in
real-time

● Record local and remote audio and video streams

● Reliably exchange data with a peer in real-time

Screen sharing

● Google Chrome has experimental support for screen
sharing

– You need to turn on a hidden flag to use it

● Screen sharing is (more) dangerous (than video calling)

– It only takes one frame to reveal any personal details on your
screen

● In the future screen sharing will be restricted

– Only available to Chrome apps (not web-pages)

– Will require you to explicitly select the screen or window
you want to share

The DataChannel

● The WebRTC DataChannel uses SCTP over DTLS

– SCTP means reliable, in-order, frame delivery

– DTLS means UDP packets (so the same NAT traversal
mechanisms can be used for audio, video, and data) that are
encrypted

● There are already peer-2-peer file-sharing applications
implemented using the WebRTC DataChannel

Demo #2: live.pics.io

● Produced by pics.io

● Uses WebRTC DataChannels for “Live Collaborative
Image Sharing”

● Drop your images into the browser

● Share the link (to multiple people)

● Talk people through your slide-show

http://live.pics.io/

http://live.pics.io/

WebRTC applications

● WebRTC is not about making phone calls in a browser
– although this is one possible use case

● WebRTC allows you to make communicate in a
contextual way

● A phone call is an activity of its own – but that's not
how humans communicate face to face

● A phone call is a disruptive (rude) demanding event

WebRTC is about context

● Talk to someone while collaborating on a document
● A better way to access customer services

– Already authenticated

– Use a web-form instead of an IVR

● A truly virtual PBX
– Web-based phone and operator console

● Many gaming and entertainment related applications
– FPS without centralised servers (DataChannel) and where you can see and hear your

opponents

– Online gambling (for example, poker) where you can see your opponents

– Online dating, after dinner speaking, and so on

– It's not necessarily about the real-time audio and video, but they enhance
the experience

Demo #3: Cube Slam

● Produced by Google to showcase WebRTC

● WebRTC DataChannel enables multi-player gaming

● WebRTC media enhances the game but is not part of
it

https://www.cubeslam.com/

https://www.cubeslam.com/

The WebRTC APIs are not enough

● Google made a controversial (but very wise) decision
not to specify how the signalling should work

● Signalling is required

– To discover who to communicate with

– To exchange information on what the communication should
be (audio, data, video, and codecs)

– Even the simplest, proprietary, RESTful exchange is signalling

● Interoperability may negatively impact the business
case

– For example:
● Document collaboration – you want to keep people in your application
● Online dating – you want to keep people on your site
● Online gaming – there is no point in different games interoperating

Interoperability is not always required

UA UAMedia

Server

SignallingSig
nall

in
g

The signalling triangle

● These are typically ones where the point of the
application is communication

– For example:
● Conferencing – calls in and out of legacy networks are required
● Call Centres – calls in and out of legacy networks are required
● Virtual PBX – calls in and out of legacy networks are required

Interoperability is sometimes required

The signalling trapezoid

UA UA

Server Signalling

Media

Server

SignallingSi
gn

al
lin

g

Signalling transport options

● XHR Polling (HTTP Long Polling)

– Easy

– Securable

– Inefficient

● WebSockets

– Available in all modern browsers (certainly any with WebRTC
support)

– Fast

– Securable

Demo #4: Web Communicator

● A fully-featured unified communications client

● Makes use of WebRTC and WebSockets

● Multiple WebSocket/DataChannel connections for multiple
protocols

– MSRP (file-transfer), SIP (session signalling), and XMPP (messaging
and presence)

● No need to create a new application for every target platform

● Browsers without WebRTC support can still use WebSocket
for file-transfer, messaging, presence, and other data

The WebSocket Protocol enables two-way communication
between a client running untrusted code in a controlled
environment to a remote host that has opted-in to
communications from that code.

RFC 6455, I. Fette (Google, Inc) et al, December 2011

http://tools.ietf.org/html/rfc6455

To enable Web applications to maintain bidirectional
communications with server-side processes, this
specification introduces the WebSocket interface.

The WebSocket API (W3C Candidate
Recommendation), I. Hickson (Google, Inc),
20 September 2012

http://www.w3.org/TR/websockets

http://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/websockets

● A raw TCP/UDP API for Javascript would be
dangerous

– There would be no need to fool users into installing trojans

● The WebSocket protocol is asynchronous

– Connections can only be established from the client side

● Data from client to server is masked

– Prevents in-line proxies from mistaking the data for HTTP and
modifying it

● Can be secured using TLS

WebSockets: safe and secure

Easy to use

● Very simple API

– Constructor creates (opens) the connection

– Methods: close(), send()

– Events: onopen(), onerror(), onclose()

● Has the advantages of TCP and UDP

– Data is framed – no need to parse the stream to work out
where messages start and end

– Frame delivery is guaranteed and in-order

● Interpretation of the frames is based on
subprotocol not TCP or UDP port

Opening a connection (Handshake)

GET wss://edge00.crocodilertc.net/4m9e4ipsfd8uh0leg0kr HTTP/1.1
Origin: https://www.crocodiletalk.com
Host: edge00.crocodilertc.net
SecWebSocketKey: ywV2YxcaL0DMDVPyeHYj3Q==
Upgrade: websocket
SecWebSocketProtocol: sip
Connection: Upgrade
SecWebSocketVersion: 13

HTTP/1.1 101 Switching Protocols
AccessControlAllowOrigin: https://www.crocodiletalk.com
Connection: upgrade
SecWebSocketAccept: 9H9dBstuq+Y4Be2Ql7WWkV6tnjA=
SecWebSocketProtocol: sip
Upgrade: websocket

Request from client (browser)

Response from server

The browser API handles this for you

● Two types of frame

– Data frames

– Control frames
● Close

If you receive a close on a connection that you have not send a close on, send a close
on that connection

● Ping
If you receive a ping on a connection send a pong on that connection

● Pong

The browser API handles this for you

Controlling connections

Sending/receiving frames
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-------+-+-------------+-------------------------------+
F	R	R	R	opcode	M	Payload len	Extended payload length
I	S	S	S	(4)	A	(7)	(16/64)
N	V	V	V		S		(if payload len==126/127)
	1	2	3		K		
+-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +							
Extended payload length continued, if payload len == 127							
+ - - - - - - - - - - - - - - - +-------------------------------+
| |Masking-key, if MASK set to 1 |
+-------------------------------+-------------------------------+
| Masking-key (continued) | Payload Data |
+-------------------------------- - - - - - - - - - - - - - - - +
: Payload Data continued ... :
+ - +
| Payload Data continued ... |
+---+

RFC 6455, section 5.2

The browser API handles this for you

● Proxies

– In-line proxies may be an issue
● Masking helps avoid frame corruption, but sometimes the handshake

fails
● Using TLS avoids the issue and is good-practice anyway

– Configured proxies
● Must support the CONNECT HTTP request

● Subprotocols
– http://www.iana.org/assignments/websocket/websocket.xml

Proxies and subprotocols

http://www.iana.org/assignments/websocket/websocket.xml

The simplest form of signalling

● Exchange json blobs over WebSockets

● But beware, when you go beyond the basic “call”
signalling gets hard (especially in the edge cases)

● Standards based signalling schemes have already
solved:

– Session liveness

– Hold

– Renegotiate

– Transfer

– and more...

Signalling options

● Open standards are usually best

– SIP over WebSocket,
http://tools.ietf.org/html/draft-ietf-sipcore-sip-websocket

– XMPP over WebSocket,
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket

– OpenPeer, http://openpeer.org/

● The WebRTC API is easy but signalling is often hard

– There are many open-source libraries that do the signalling

– The library APIs vary in complexity to meet every need

– Hosted infrastructure lets you add real-time
communications to your website without having to build a
network yourself

http://tools.ietf.org/html/draft-ietf-sipcore-sip-websocket
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket
http://openpeer.org/

Opensource projects

● Node.js

– Many WebSocket libraries available (for example, support in socket.io)

● SIP Servers

– Asterisk, Kamailio, OverSIP, reSIPprocate

● SIP Clients

– JAIN-SIP-Javascript, JsSIP, QoffeeSIP, sipml5

● XMPP Servers (and connection managers)

– ejabberd-websockets, node-xmpp-bosh, openfire-websockets

● XMPP Clients

– JSJaC, Strophe

● Google Chrome provides a range of tools to help you
create and debug applications

● You can add view code and add breakpoints

● You can modify code and view debug

● You can examine what is happening on the wire

– The Network → WebSockets view can be particularly helpful –
especially if using TLS

● ...

Demo #5: Chrome Developer Tools

Dealing with firewalls

● WebRTC is peer-to-peer technology

● Sometimes firewall and NAT devices get in the way

● ICE (Interactive Connectivity Establishment) is mandatory

– STUN (Session Traversal Utilities for NAT) helps in most cases

– TURN (Traversal Using Relays around NAT) helps when STUN
doesn't

● If a firewall is specifically configured to block real-time
communications your options are limited

– TURN over WebSockets is now under development

https://code.google.com/p/rfc5766-turn-server/

https://code.google.com/p/rfc5766-turn-server/

Desktop and mobile apps

● This technology isn't just for browsers

● Native WebRTC is possible

– Mobile: Android and iOS libraries, and BB10 has support in
the OS

– Desktop: Linux, OS X, and Windows libraries

● Native WebSocket libraries are available

– WebSockets are a sensible option for mobile app developers
who want a safe way to exchange data with servers

● Download, build, and install Kamailio 4.1

● Create a kamailio.cfg file based on the following code
snippets

http://www.kamailio.org/

HOWTO: A SIP over WebSockets Server

http://www.kamailio.org/

...
tcp_accept_no_cl=yes
...
event_route[xhttp:request] {

set_reply_close();
set_reply_no_connect();

if ($hdr(Upgrade)=~"websocket"
&& $hdr(Connection)=~"Upgrade"
&& $rm=~"GET") {

Validate as required (Host:, Origin:, Cookie:)

if (ws_handle_handshake())
exit;

}

xhttp_reply("404", "Not Found", "", "");
}

Handling WebSocket handshakes in Kamailio

● Javascript applications cannot see the real IP address
and port for the WebSocket connection

● This means that the SIP server cannot trust addresses
and ports in SIP messages received over WebSockets

● nathelper and/or outbound can be used to solve this
problem

WebSocket clients are always behind a NAT

modparam(“nathelper|registrar”, “received_avp”, “$avp(RECEIVED)”)
...
request_route {

route(REQINIT);
route(WSDETECT);
...

route[WSDETECT] {
if (proto == WS || proto == WSS) {

force_rport();
if (is_method(“REGISTER”)) {

fix_nated_register();
} else if (is_method(“INVITE|NOTIFY|SUBSCRIBE”)) {

add_contact_alias();
}

}
}
...
route[WITHINDLG] {

if (has_totag()) {
if (loose_route()) {

if (!isdsturiset()) {
handle_ruri_alias();

}
...

Using nathelper on SIP over WebSocket requests

onreply_route {
if ((proto == WS || proto == WSS)

&& status =~ “[12][09][09]”) {
add_contact_alias();

}
}

Using nathelper on SIP over WebSocket responses

● Use mediaproxy-ng from SIPWise

● Companion Kamailio module: rtpproxy-ng

● SIP Signalling is proxied instead of B2BUA'd (that is,
not broken)

https://github.com/sipwise/mediaproxy-ng

http://kamailio.org/docs/modules/devel/modules/rtpproxy-ng.html

What about web-calls to non-web endpoints?

https://github.com/sipwise/mediaproxy-ng
http://kamailio.org/docs/modules/devel/modules/rtpproxy-ng.html

Catch 488 to invoke mediaproxy-ng
modparam(“rtpproxyng”, “rtpproxy_sock”, “udp:localhost:22223”)
...
route[LOCATION] {

...
t_on_failure(“UA_FAILURE”);

}
...
failure_route[UA_FAILURE] {

if (t_check_status(“488”) && sdp_content()) {
if (sdp_get_line_startswith(“$avp(mline)”, “m=”)) {

if ($avp(mline) =~ “SAVPF”)) {
$avp(rtpproxy_offer_flags) = “frocsp”;
$avp(rtpproxy_answer_flags) = “froc+SP”;

} else {
$avp(rtpproxy_offer_flags) = “froc+SP”;
$avp(rtpproxy_answer_flags) = “frocsp”;

}
In a production system you probably need to catch
“RTP/SAVP” and “RTP/AVPF” and handle them correctly
too

}
append_branch();
rtpproxy_offer($avp(rtpproxy_offer_flags));
t_on_reply(“RTPPROXY_REPLY”);
route(RELAY);

}
}
...

Handle replies to the retried INVITE

modparam(“rtpproxyng”, “rtpproxy_sock”, “udp:localhost:22223”)
...
failure_route[UA_FAILURE] {

...
t_on_reply(“RTPPROXY_REPLY”);
route(RELAY);

}

onreply_route[RTPPROXY_REPLY] {
if (status =~ “18[03]”) {

mediaproxyng only supports SRTP/SDES – early media
won't work so strip it out now to avoid problems
change_reply_status(180, “Ringing”);
remove_body();

} else if (status =~ “2[09][09]” && sdp_content()) {
rtpproxy_answer($avp(rtpproxy_answer_flags));

}
}
...

Current mediaproxy-ng limitations

● No support for SRTP/DTLS

– SRTP/DTLS is a MUST for WebRTC and SRTP/SDES is a MUST
NOT

– mediaproxy-ng works with Google Chrome today (but Google will be
removing SRTP/SDES over the next year)

– mediaproxy-ng does not work with Firefox at this time

● Does not support “bundling”/”unbundling”

– WebRTC can “bundle” audio and video streams together, but
mediaproxy-ng does not support this yet

– Google Chrome does not currently support “unbundling”

– You can have an audio stream, or a video stream, but not
an audio and video stream at this time

● No communication required between authentication server and
Kamailio

● Credentials expire (the expiry time is chosen by the
authentication server)

● Extract username and password from the “GET” used for HTTP
handshake and authenticate there, or

● Use the credentials for digest authentication of SIP requests

● Check the From-URI or To-URI in SIP headers match the user
part of the credential

http://kamailio.org/docs/modules/devel/modules/auth_ephemeral.html

HOWTO: Authenticate SIP using a web-service

http://kamailio.org/docs/modules/devel/modules/auth_ephemeral.html

Web
Service

SIP Proxy

Calling
UA

Called UA

SIP

SIP

REST
OAuth2

Shared secret –
communication

link not required

You don’t have to
create or manage
accounts on the
SIP
Proxy/registrar

Authenticating the handshake

...
tcp_accept_no_cl=yes
...
modparam(“auth_ephemeral”, “secret”, “kamailio_rules”)
...
modparam(“htable”, “htable”, “wsconn=>size=8;”)
...
event_route[xhttp:request] {

...
URI format is /?username=foo&password=bar
$var(uri_params) = $(hu{url.querystring});
$var(username) = $(var(uri_params){param.name,username,&});
$var(password) = $(var(uri_params){param.name,password,&});
Note: username and password could also have been in a Cookie: header

if (!autheph_authenticate(“$var(username)”, “$var(password)”)) {
xhttp_reply(“403”, “Forbidden”, “”, “”);
exit;

}

if (ws_handle_handshake()) {
$sht(wsconn=>$si:$sp::username) = $var(username)
exit;

}
...

event_route[websocket:closed] {
$var(regex) = $si + “:” $sp + “.*”;
sht_rm_name_re(“wsconn=>$var(regex)”);

}

Checking SIP requests
...
request_route {

route(REQINIT);
route(WSDETECT);
...
if (!(proto == WS || proto == WSS))

route(AUTH);
...

route[WSDETECT] {
if (proto == WS || proto == WSS) {

$var(username) = (str) $sht(wsconn=>$si:$sp::username);
if ($var(username) == $null || $var(username) == “”) {

send_reply(“403”, “Forbidden”);
ws_close(1008, “Policy Violation”);
exit;

}

if (!autheph_check_timestamp(“$var(username)”)
|| (is_method(“REGISTER|PUBLISH”)

&& !autheph_check_to(“$var(username)”))
|| (!has_totag() && !autheph_check_from(“$var(username)”))) {

send_reply(“403”, “Forbidden”);
ws_close(1008, “Policy Violation”);
exit;

}

force_rport();
...

Questions?

Code: https://github.com/crocodilertc

Email: peter.dunkley@crocodilertc.net

Twitter: @pdunkley

https://github.com/crocodilertc
mailto:peter.dunkley@crocodilertc.net
http://twitter.com/pdunkley

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

