

Expanding Axis
across 3 screens

with Mojito

Caridy Patino
Principal Engineer at Yahoo! Search
YUI Evangelist & Mojito Ambassador

caridy@yahoo-inc.com
@caridy

mailto:caridy@yahoo-inc.com
mailto:caridy@yahoo-inc.com
mailto:caridy@yahoo-inc.com
mailto:caridy@yahoo-inc.com

Agenda:

- 12 Lessons from Axis

- Mojito for Mobile Apps

Axis demo video from
axis.yahoo.com

for better context!

?

From day one:

iPhone/iPad/Desktop

Illustration by Kevin Cornell

12 Lessons

http://www.alistapart.com/about/kevincornell
http://www.alistapart.com/about/kevincornell

Lesson #1
Build mobile products on top of
platforms designed primarily for

mobile products

Yahoo! Cocktails is set to become the de facto
infrastructure for mobile applications at Yahoo!

Yahoo! Cocktails Umbrella

Mojito JavaScript
Application
Framework

http://github.com/yahoo/mojito

https://github.com/yshaker/mojito-shaker
https://github.com/yshaker/mojito-shaker

Manhattan
Hosting infrastructure for
Node.js applications.

Mojito Shaker
Shaker is a static asset rollup
manager for Mojito applications.

http://github.com/yahoo/mojito-shaker

https://github.com/yshaker/mojito-shaker
https://github.com/yshaker/mojito-shaker

Lesson #2
"write once, run everywhere",

no so fast!

Axis design specs per device

Can you imagine a car that works exceptionally
well under any condition?

Cocktails is a suite of technologies
 to create user experiences optimized

for each connected device

Lesson #3
"divide & conquer",

yes, it works on mobile too

Sub-applications

Axis “Search Layer” is a completely
independent sub-application

Sub-applications

In mojito, it is a Mojit or a composition of Mojits

Lesson #4
Analyze each UI element individually

vs

Native Web

+

Native Web

vs

Compiled Web-based

vs

$ mojito build $ mojito start

vs vs

The three choices

Native Compiled Web-based

Lesson #5
Abstract communication when possible

In Axis, we connect the pieces together
using “Y.CL” abstraction!

“Y.CL” enables Mojito Applications
to talk to Native counterparts

Native

Compiled

Web-based

Y.CL in Axis

YUI Communication Layer
(aka “Y.CL” is also open source)

http://yuilibrary.com/gallery/show/communication-layer

http://yuilibrary.com/gallery/show/communication-layer
http://yuilibrary.com/gallery/show/communication-layer

Lesson #6
Try to reduce fragmentation

No need to issue an app update
when using web-based sub-applications

Lesson #7
Refreshing WebViews (HTML parts)

can be painful

The code and content in a WebView might
need to be refreshed programmatically

Refresh webviews when returning from
background is enough for most cases

meteorjs, derbyjs and others
are experimenting with

hot-patches

Lesson #8
It is very hard to experiment in

iOS and Android

Ideal for experiment-driven development

http://www.bluefountainmedia.com/blog/how-to-be-successful-using-ab-and-multivariate-testing/

http://www.bluefountainmedia.com/blog/how-to-be-successful-using-ab-and-multivariate-testing/
http://www.bluefountainmedia.com/blog/how-to-be-successful-using-ab-and-multivariate-testing/

Lesson #9
Expect network craziness

Network failures need to be controlled

Lesson #10
CSS can also fail when loading

web-based apps

http://blog.mobtest.com/2012/05/heres-why-the-facebook-ios-app-is-so-bad-uiwebviews-and-no-nitro/

Initialization needs to be controlled

http://blog.mobtest.com/2012/05/heres-why-the-facebook-ios-app-is-so-bad-uiwebviews-and-no-nitro/
http://blog.mobtest.com/2012/05/heres-why-the-facebook-ios-app-is-so-bad-uiwebviews-and-no-nitro/

Lesson #11
WebViews are not first class citizen in iOS

Memory Warnings Experiment
in iOS

Search Layer
WebView

Browser
WebView

Low Memory Warnings in iOS

Axis experiment

Lesson #12
We need “Compiled + Web-based” auto-updating

capabilities on WebViews NOW!

Compiled + Web-based

- Keep sub-apps locally
- Update them over the network
- Refresh them when possible
- Delegate actions over the network

Loading over the network is still easier and
safer than stepping into the gray area of

auto-upgrading HTML5 apps

 Optimization vs Adaptation

Optimization vs Adaptation
Analogy

Optimization in Mojito

Performance as a product feature

Optimization in Mojito is about
customizing the way your product

behaves per runtime and per request.

It is about producing the right HTML, JS
and CSS per runtime and per request.

Mojito Runtimes

Mojito Context

- Locale (en-US. pt-BR)
- Device type (iphone, ipad)

- Network (AT&T, Verizon)
- CPU (low, medium, high)

Optimize per context

/Mojits/Foo/definition.json

What to do in an event of a
traffic surge?

Where to render?

card

/Mojits/Bar/definition.json

Control your dimensions in Mojito

/dimensions.json

Adaptation in Mojito

Adaptability as a product feature

Adaptation in Mojito is about
customizing the UI per screen size,
per connection speed, per feature

detection, etc.

It is about responsive UI

In Mojito, YUI covers a
lot in terms of adaptation:

- Screen size (css media queries)
- Orientation (landscape vs portrait)
- Connection Speed (3G)
- Memory (iOS memory warning)
- Feature

Adapt per:

Let’s recap

Axis runs on Yahoo! Cocktails

Axis is a hybrid application composed of
independent small native and HTML5

sub-applications

HTML5 parts were written on
Yahoo! Mojito, an open source

application framework
on top of YUI and Node.js

Axis leverages Mojito context to
optimize and adapt those HTML5 parts

Axis leverages Y.CL as the main
infrastructure to connect different parts

Mojito JavaScript
Application
Framework

http://github.com/yahoo/mojito

https://github.com/yshaker/mojito-shaker
https://github.com/yshaker/mojito-shaker

Thank you!
 @caridy

