
1

WebSockets

WebSockets

Email: peter.dunkley@crocodilertc.net
Twitter: @pdunkley

WebSockets
and browser-based real-time communications

Peter Dunkley, Technical Director, Crocodile RCS Ltd

mailto:peter.dunkley@crocodilertc.net
http://twitter.com/pdunkley

Evolution on the web

1990 1996 1998 2004 2011

Sir Tim Berners-Lee
creates HTML. Web
-pages are static

Microsoft and Netscape
introduce different
mechanisms for DHTML

W3C produces the
DOM1 specification

Google uses Ajax
in Gmail (W3C
releases 1st draft in
2006) – the dawn
of web-apps

WebSocket and
WebRTC
implementations
become available

Revolution in telecoms

1792 1837 1876 1919 1960s > 1990s > 2011

WebSocket and
WebRTC
implementations
become
available

The revolution

Before today the operators (big and small) had
full control over real-time communications
because it was hard to do and substantial
infrastructure investment was required.Claude Chappe

invented the optical
telegraph

First commercial
electrical telegraph
created by
Cooke and
Wheatstone

Alexander
Graham
Bell patents
the telephone

Rotary dial
enters
service

From the 1960s
onwards digital
exchanges start to
appear

1963: DTMF
enters service

From the 1990s onwards
voice started to be carried
on technologies developed
for data networks such as
ATM and IP

Demo #1: Click-2-call

● A simple addition to any commercial web-site
● Makes use of WebSocket and WebRTC
● Can be enhanced to make the calling

experience richer
– Context aware communication

– A fun queuing experience

Demo #1: Click-2-call

What are WebSockets?

The WebSocket Protocol enables two-way communication
between a client running untrusted code in a controlled
environment to a remote host that has opted-in to
communications from that code.

RFC 6455, I. Fette (Google, Inc) et al, December 2011

http://tools.ietf.org/html/rfc6455

To enable Web applications to maintain bidirectional
communications with server-side processes, this
specification introduces the WebSocket interface.

The WebSocket API (W3C Candidate
Recommendation), I. Hickson (Google, Inc),
20 September 2012

http://www.w3.org/TR/websockets

http://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/websockets

Aren't there other options?

● Ajax
– You need to open a new connection each time you refresh

– The web-server needs to process (and run scripts, lookup
databases, etc) for each connection

– With WebSockets you open the connection and keep it open
as long as you need it

● BOSH
– Not an IETF standard

– Less widely supported than WebSocket

– WebSocket requires a single network connection, BOSH uses
two

Safe and secure

● A raw TCP/UDP API for Javascript would be
dangerous
– There would be no need to fool users into installing trojans

● The WebSocket protocol is asynchronous
– Connections can only be established from the client side

● Data from client to server is masked
– Prevents in-line proxies from mistaking the data for HTTP

and modifying it

● Can be secured using TLS

Easy to use

● Very simple API
– Constructor creates (opens) the connection

– Methods: close(), send()

– Events: onopen(), onerror(), onclose()

● Has the advantages of TCP and UDP
– Data is framed – no need to parse the stream to work out

where messages start and end

– Frame delivery is guaranteed and in-order

● Interpretation of the frames is based on
subprotocol not TCP or UDP port

Opening a connection (Handshake)

GET wss://edge00.crocodilertc.net/4m9e4ipsfd8uh0leg0kr HTTP/1.1
Origin: https://www.crocodiletalk.com
Host: edge00.crocodilertc.net
Sec­WebSocket­Key: ywV2YxcaL0DMDVPyeHYj3Q==
Upgrade: websocket
Sec­WebSocket­Protocol: sip
Connection: Upgrade
Sec­WebSocket­Version: 13

HTTP/1.1 101 Switching Protocols
Access­Control­Allow­Origin: https://www.crocodiletalk.com
Connection: upgrade
Sec­WebSocket­Accept: 9H9dBstuq+Y4Be2Ql7WWkV6tnjA=
Sec­WebSocket­Protocol: sip
Upgrade: websocket

Request from client (browser)

Response from server

The browser API handles this for you

Controlling connections

● Two types of frame
– Data frames

– Control frames
● Close

If you receive a close on a connection that you have not send a close on, send a
close on that connection

● Ping
If you receive a ping on a connection send a pong on that connection

● Pong

The browser API handles this for you

Sending/receiving frames
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-------+-+-------------+-------------------------------+
F	R	R	R	opcode	M	Payload len	Extended payload length
I	S	S	S	(4)	A	(7)	(16/64)
N	V	V	V		S		(if payload len==126/127)
	1	2	3		K		
+-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +							
Extended payload length continued, if payload len == 127							
+ - - - - - - - - - - - - - - - +-------------------------------+
| |Masking-key, if MASK set to 1 |
+-------------------------------+-------------------------------+
| Masking-key (continued) | Payload Data |
+-------------------------------- - - - - - - - - - - - - - - - +
: Payload Data continued ... :
+ - +
| Payload Data continued ... |
+---+

RFC 6455, section 5.2

The browser API handles this for you

Proxies and subprotocols

● Proxies
– In-line proxies may be an issue

● Masking helps avoid frame corruption, but sometimes the handshake
fails

● Using TLS avoids the issue and is good-practice anyway

– Configured proxies
● Must support the CONNECT HTTP request

● Subprotocols
– http://www.iana.org/assignments/websocket/websocket.xml

http://www.iana.org/assignments/websocket/websocket.xml

Opensource projects
● Node.js

– Many WebSocket libraries available

● SIP Servers

– Asterisk, Kamailio, OverSIP, reSIPprocate

● SIP Clients

– JAIN-SIP-Javascript, JsSIP, QoffeeSIP, sipml5

● XMPP Servers (and connection managers)

– ejabberd-websockets, node-xmpp-bosh, openfire-websockets

● XMPP Clients

– JSJaC, Strophe

Demo #2: Web Communicator
● A fully-featured unified communications client
● Makes use of WebSocket and WebRTC
● Multiple WebSocket connections for multiple

protocols
– MSRP (file-transfer), SIP (session signalling), and XMPP (messaging

and presence)

● No need to create a new application for every target
platform

● Browsers without WebRTC support can still use
WebSocket for file-transfer, messaging, presence,
and other data

Demo #2: Web Communicator

WebRTC

There are a number of proprietary implementations that
provide direct interactive rich communication using audio,
video, collaboration, games, etc. between two peers' web-
browsers. These are not interoperable, as they require non-
standard extensions or plugins to work. There is a desire to
standardize the basis for such communication so that
interoperable communication can be established between
any compatible browsers.

Real-Time Communication in WEB-
Browsers (rtcweb) 2013-03-13 charter

http://tools.ietf.org/wg/rtcweb/

http://tools.ietf.org/wg/rtcweb/

WebRTC has a rich API

● Media Capture and Streams
– Audio, video, and screen-sharing

– http://www.w3.org/TR/mediacapture-streams/

● MediaStream Recording
– http://www.w3.org/TR/mediastream-recording/

● WebRTC
– Data can be exchanged too

– http://www.w3.org/TR/webrtc/

Available (to varying degrees) in Chrome and Firefox stable

http://www.w3.org/TR/mediacapture-streams/
http://www.w3.org/TR/mediastream-recording/
http://www.w3.org/TR/webrtc/

The WebRTC APIs are not enough

● Google made a controversial (but very wise)
decision not to specify how the signalling
should work

● Signalling is required
– To discover who to communicate with

– To exchange information on what the communication should
be (audio, data, video, and codecs)

– Even the simplest, proprietary, RESTful

The signalling trapezoid/triangle

Browser Browser

Server Server
Signalling

 S

ig
na

lli
ng

WebRTC media or DataChannel

Signalling options
● Open standards are usually best

– SIP over WebSocket,
http://tools.ietf.org/html/draft-ietf-sipcore-sip-websocket

– XMPP over WebSocket,
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket

– OpenPeer, http://openpeer.org/

● The WebRTC API is easy but signalling is often hard
– There are many open-source libraries that do the signalling

– The library APIs vary in complexity to meet every need

– Hosted infrastructure lets you add real-time communications to your
website without having to build a network yourself

http://tools.ietf.org/html/draft-ietf-sipcore-sip-websocket
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket
http://openpeer.org/

Demo #3: Chrome Developer Tools

● Google Chrome provides a range of tools to
help you create and debug applications

● You can add view code and add breakpoints
● You can modify code and view debug
● You can examine what is happening on the

wire
– The Network → WebSockets view can be particularly helpful

– especially if using TLS

● ...

Demo #3: Chrome Developer Tools

Dealing with firewalls
● WebRTC is peer-to-peer technology
● Sometimes firewall and NAT devices get in the way
● ICE (Interactive Connectivity Establishment) is

mandatory
– STUN (Session Traversal Utilities for NAT) helps in most cases

– TURN (Traversal Using Relays around NAT) helps when STUN doesn't

● If a firewall is specifically configured to block real-time
communications your options are limited

Applications of this technology
● Telecommunications

– Unified communications, corporate infrastructure, call centres

● Distance learning
– Virtual colleges and universities

● Telemedicine
– Providing medical services out-of-hours and to remote locations

● Peer-to-peer applications
– File-sharing, collaboration

● Gaming
– Multi-player interactive (with and without servers)

● ...

Browser support today

IE FF Chrome Safari O iOS
Safari

O
Mini

Android
Browser

Blackberry
Browser

O
Mobile

Chrome
for

Android

FF for
Android

WebSocket 10.0 6.0 14.0 6.0 12.1 6.0 - - 7.0 12.1 27.0 22.0

WebRTC - 17.0*** 21.0*** - -* - - - 10.0*** -* -** -

* Partial support for GetUserMedia is in some old versions
** WebRTC is known to work in the latest version if you set a flag
*** As WebRTC is still under development later browser versions will be more stable and have more features

http://caniuse.com/

http://caniuse.com/

Desktop and mobile apps

● This technology isn't just for browsers
● Native WebRTC libraries are available

– Mobile: Android and iOS

– Desktop: Linux, OS X, and Windows

● Native WebSocket libraries are available
– WebSockets are a sensible option for mobile app developers

who want a safe way to exchange data with servers

Questions?

Code: https://github.com/crocodilertc

Email: peter.dunkley@crocodilertc.net

Twitter: @pdunkley

https://github.com/crocodilertc
mailto:peter.dunkley@crocodilertc.net
http://twitter.com/pdunkley

Crocodile WebRTC SDK and Network

www.crocodilertc.net

https://www.crocodilertc.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

